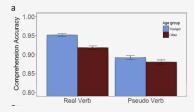
There Is No Age-Related Sentence Processing Deficit Experimental Evidence and Implications for Aphasiology

Willem S. van Boxtel Laurel A. Lawyer

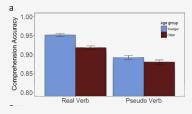
Academy of Aphasia Annual Meeting

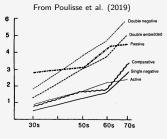
October 24th, 2022



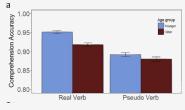
Contents / Introduction

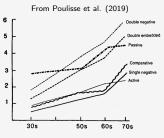
- Sentence processing and healthy aging
- A new look at Working Memory: RC disambiguation
- Implicit learning: structural priming
- 4 Neuroimaging: structural priming
- General discussion


Impairment-focused discourse in linguistic aging studies:


Impairment-focused discourse in linguistic aging studies:

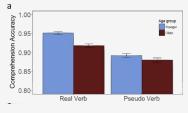
From Poulisse et al. (2019)

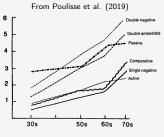

Impairment-focused discourse in linguistic aging studies:



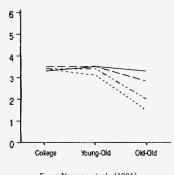

From Obler et al. (1991)

Impairment-focused discourse in linguistic aging studies:

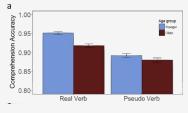


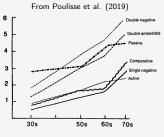


From Obler et al. (1991)

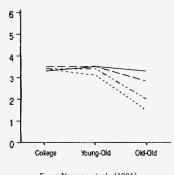


Impairment-focused discourse in linguistic aging studies:

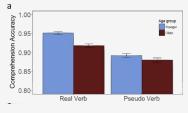

From Obler et al. (1991)

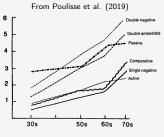


From Norman et al. (1991)

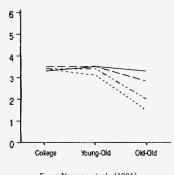

Smaller WM spans / Slower processing / Inefficient inhibition

Impairment-focused discourse in linguistic aging studies:


From Obler et al. (1991)

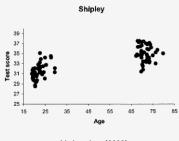


From Norman et al. (1991)


Smaller WM spans / Slower processing / Inefficient inhibition

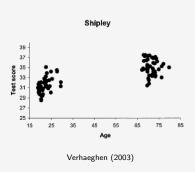
Impairment-focused discourse in linguistic aging studies:

From Obler et al. (1991)



From Norman et al. (1991)

Smaller WM spans / Slower processing / Inefficient inhibition


However:

However:

Verhaeghen (2003)

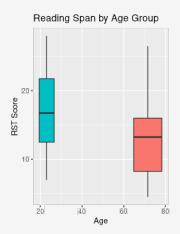
However:

20 40 60 Age (years) Campbell et al. (2016)

Syntatic sensitivity (sub - unamb RTs, ms)

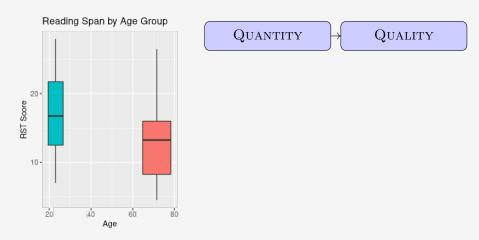
So ...

 How do we expose what aspects of language processing decline (if any)

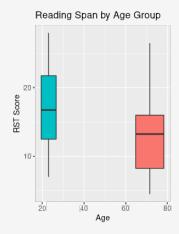

- How do we expose what aspects of language processing decline (if any)
 - And what role does memory play? (Martin et al., 2018)

- How do we expose what aspects of language processing decline (if any)
 - And what role does memory play? (Martin et al., 2018)
- How do we take into account possible explicit/implicit distinctions and variable performance by older adults in past language studies?

- How do we expose what aspects of language processing decline (if any)
 - And what role does memory play? (Martin et al., 2018)
- How do we take into account possible explicit/implicit distinctions and variable performance by older adults in past language studies?
- How can answering these questions for typical aging inform studies of aphasia?


FIRST: By looking at memory from a wider perspective.

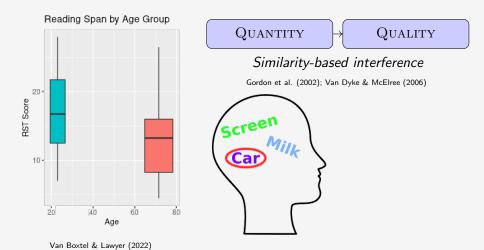
FIRST: By looking at memory from a wider perspective.


Van Boxtel & Lawyer (2022)

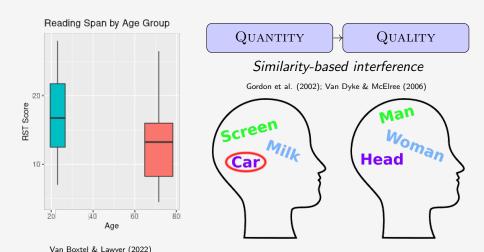
FIRST: By looking at memory from a wider perspective.

Van Boxtel & Lawyer (2022)

FIRST: By looking at memory from a wider perspective.


QUANTITY QUALITY

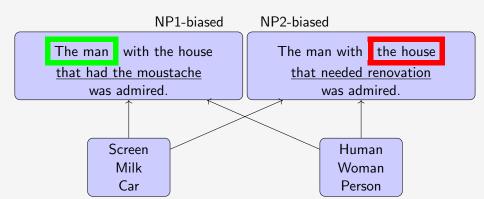
Similarity-based interference

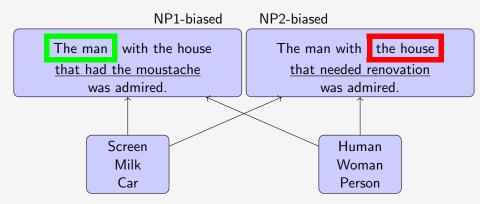

Gordon et al. (2002); Van Dyke & McElree (2006)

Van Boxtel & Lawyer (2022)

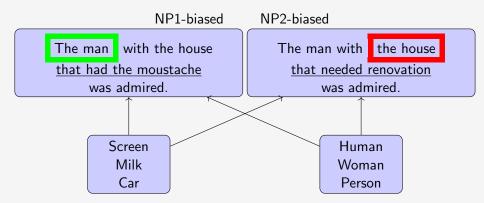
FIRST: By looking at memory from a wider perspective.

FIRST: By looking at memory from a wider perspective.

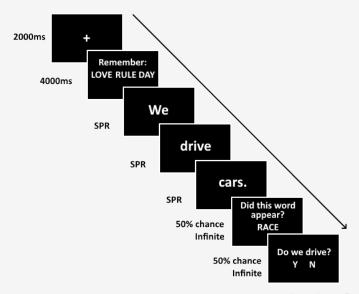



NP1-biased

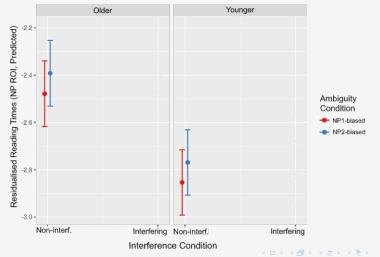
The man with the house that had the moustache was admired.


NP2-biased

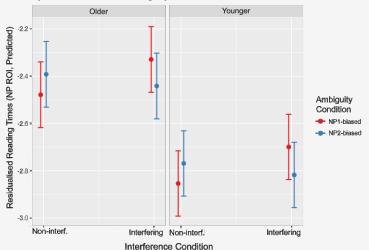
The man with the house that needed renovation was admired.


Older and younger adults (n = 65) $(M_{YAge} = 21.8, [18,25]; M_{OAge} = 68.5, [65, 76])$ presented with disambiguated relative clauses (RC)

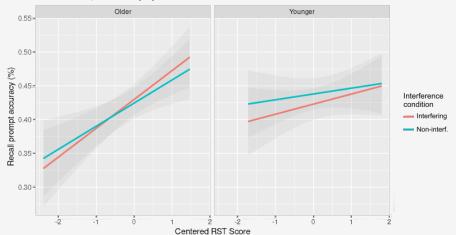
- Older and younger adults (n = 65) $(M_{Y Age} = 21.8, [18,25]; M_{O Age}$ = 68.5, [65, 76]) presented with disambiguated relative clauses (RC)
- Interfering or non-interfering memory load before every RC sentence \rightarrow prompted for recall;


Van Boxtel & Lawyer (in prep. (a)). https://osf.io/eympz/

Study 1: Procedure

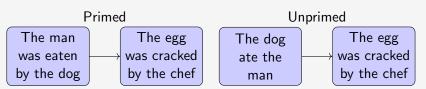

Study 1: Results (1)

Predicted Residualised Reading Times in the NP ROI by Interference and Ambiguity Condition


Study 1: Results (1)

Predicted Residualised Reading Times in the NP ROI by Interference and Ambiguity Condition

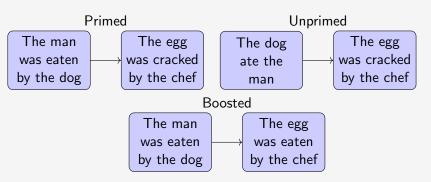
Study 1: Results (2)


FIRST: By looking at WM from a wider perspective **SECOND**: By using an implicit task.

 Structural priming: Repeated structures are read faster and used more Bock (1986)

- Structural priming: Repeated structures are read faster and used more Bock (1986)
 - Verb match: additional facilitation

- Structural priming: Repeated structures are read faster and used more Bock (1986)
 - Verb match: additional facilitation


- Structural priming: Repeated structures are read faster and used more Bock (1986)
 - Verb match: additional facilitation

Study 2: Methods (1)

FIRST: By looking at WM from a wider perspective **SECOND**: By using an implicit task.

- Structural priming: Repeated structures are read faster and used more Bock (1986)
 - Verb match: additional facilitation

Study 2: Methods (2)

The lawyer insulted by the judge quit her profession.

	Older	Younger
Age	M = 68.8 (3.7)	M = 21.6 (2.4)
Gender	13 F, 12 M	18 F, 12 M
Years in Edu	M = 15 (3.4)	M = 15.4 (2.4)
LCT	M = 16.4 (5.3)	M = 26.6 (5.3)
RST	M = 22 (6.9)	M = 23 (5.9)

Van Boxtel & Lawyer (2022), Language, Cognition, Neuroscience; https://doi.org/10.1080/23273798.2022.2091151

Study 2: Methods (2)

The lawyer insulted | by the judge | quit her | profession.

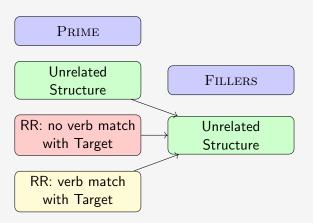
	Older	Younger
Age	M = 68.8 (3.7)	M = 21.6 (2.4)
Gender	13 F, 12 M	18 F, 12 M
Years in Edu	M = 15 (3.4)	M = 15.4 (2.4)
LCT	M = 16.4 (5.3)	M = 26.6 (5.3)
RST	M = 22 (6.9)	M = 23 (5.9)

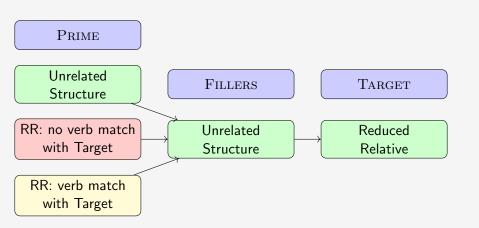
Van Boxtel & Lawyer (2022), Language, Cognition, Neuroscience; https://doi.org/10.1080/23273798.2022.2091151

Study 2: Methods (2)

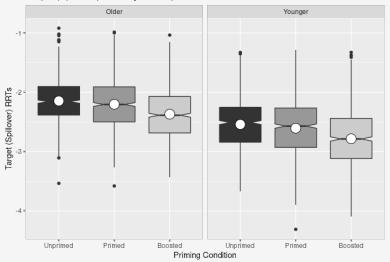
The lawyer insulted | by the judge | quit her | profession.

	Older	Younger
Age	M = 68.8 (3.7)	M = 21.6 (2.4)
Gender	13 F, 12 M	18 F, 12 M
Years in Edu	M = 15 (3.4)	M = 15.4 (2.4)
LCT	M = 16.4 (5.3)	M = 26.6 (5.3)
RST	M = 22 (6.9)	M = 23 (5.9)


Van Boxtel & Lawyer (2022), Language, Cognition, Neuroscience; https://doi.org/10.1080/23273798.2022.2091151


PRIME

Unrelated Structure


RR: no verb match with Target

RR: verb match with Target

Target (Spillover) RRTs by Priming Condition

Target (Spillover) RRTs by Priming Condition

No age differences on RC disambiguation;

- No age differences on RC disambiguation;
- No age differences on memory interference;

- No age differences on RC disambiguation;
- No age differences on memory interference;
- No age differences on syntactic priming;

- No age differences on RC disambiguation;
- No age differences on memory interference;
- No age differences on syntactic priming;

- No age differences on RC disambiguation;
- No age differences on memory interference;
- No age differences on syntactic priming;
- → Application of new techniques to old problems worthwhile.

- No age differences on RC disambiguation;
- No age differences on memory interference;
- No age differences on syntactic priming;
- → Application of new techniques to old problems worthwhile.

+ Add to Mendeley <a> Share <a> Stare <a> Cite <a> Share <a> Cite <a> Share <a> Share<a> Share<

Neuropsychologia Volume 48, Issue 4, March 2010, Pages 909-920

Language recovery in aphasia following implicit structural priming training: a case study

Spron Lee & A Gaze Man

Tage: 1841-1851 Secured Man (2016, Accepted 10 Mar 2017, Followed colour 20 Mar 2017)

Tage: 1841-1851 Secured Man (2016, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017)

Tage: 1841-1851 Secured Man (2016, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017)

Tage: 1841-1851 Secured Man (2016, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017)

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017, Tolkhold colour 20 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017

Tage: 1841-1851 Secured Mar 2018, Accepted 10 Mar 2017

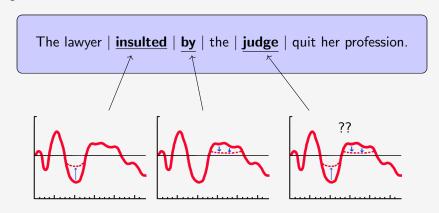
Tage: 1841-1851 Secured Ma

Get rights and content

Study 3: Methods (1)

FIRST: By looking at WM from a wider perspective

SECOND: By using an implicit task.


THIRD: By widespread use of neuroimaging methods in cognitive / linguistic studies.

Study 3: Methods (1)

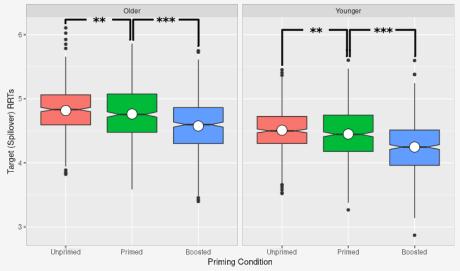
FIRST: By looking at WM from a wider perspective

SECOND: By using an implicit task.

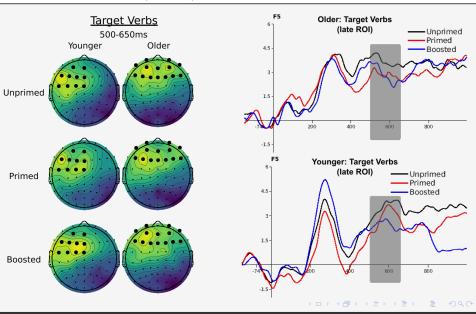
THIRD: By widespread use of neuroimaging methods in cognitive / linguistic studies.

Study 3: Methods (1)

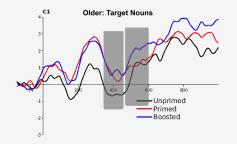
FIRST: By looking at WM from a wider perspective **SECOND**: By using an implicit task.

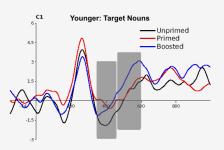

THIRD: By widespread use of neuroimaging methods in cognitive /

linguistic stu Demographics Older Younger 69.6 (4) 21.4 (2.3) Age The la ssion. Gender 13 F, 5 M 18 F. 2 M Years in Edu 15.7 (4.1) 15.5 (2.5) 8.4 (4.3) 8.4 (4.3) LCT 17.6 (6.1) **RST** 13.5 (6) Van Boxtel & Lawyer (in prep. (b)). https://osf.io/3yrnv/


←□ → ←□ → ← □ → □ ● りへで

Reading Times


Target (Spillover) RRTs by Priming Condition



Study 3: Results (ERPs)

Study 3: Results (ERPs)

(1) WM Revisited Quantity > Quality Showed surprising patterns: No age differences.

- (1) WM Revisited
 Quantity > Quality
 Showed surprising patterns:
 No age differences.
- (2) Implicit Tasks:
 Priming
 Value of syntactic
 priming shown;
 No age differences.

- (1) WM Revisited
 Quantity > Quality
 Showed surprising patterns:
 No age differences.
- (2) Implicit Tasks:

 Priming

 Value of syntactic priming shown;

 No age differences.

(3) Use of ERPs
Important to
delve "beyond";
Age differences
in topography

- (1) WM Revisited
 Quantity > Quality
 Showed surprising patterns:
 No age differences.
- (2) Implicit Tasks:
 Priming
 Value of syntactic
 priming shown;
 No age differences.

(3) Use of ERPs
Important to
delve "beyond";
Age differences
in topography

Consider interaction of memory and processing; consider quality of WM operations

(1) WM Revisited
Quantity > Quality
Showed surprising patterns:
No age differences.

(2) Implicit Tasks:

Priming

Value of syntactic priming shown;

No age differences.

(3) Use of ERPs
Important to
delve "beyond";
Age differences
in topography

Consider interaction of memory and processing; consider quality of WM operations

Employ *implicit* tasks like priming; Consider *explicit* task demands

(1) WM Revisited
Quantity > Quality
Showed surprising patterns:
No age differences.

(2) Implicit Tasks:

Priming

Value of syntactic priming shown;

No age differences.

(3) Use of ERPs
Important to
delve "beyond";
Age differences
in topography

Consider interaction of memory and processing; consider quality of WM operations

Employ *implicit* tasks like priming; Consider *explicit* task demands Examine neural dimension, even in PWA; Note changing patterns with age

Thank you!

- @PurdueAphasia
 - @DrWSvBoxtel

purdue.edu/hhs/slhs/aphasia/

willemvanboxtel.eu/